

Expertise 3 "Klimawandel und Landwirtschaft in der Region Havelland-Fläming"

Bericht zum

Modellvorhaben der Raumordnung Raumentwicklungsstrategien zum Klimawandel für die Region Havelland-Fläming

Auftraggeber:

Regionale Planungsgemeinschaft Havelland-Fläming Oderstraße 65 14513 Teltow

Autor: Andrea Lüttger

Forschungsbereich "Klimawirkung und Vulnerabilität"

Inhaltsverzeichnis

3.	LANDWIRTSCHAFT				94
					94
	3.2.	Met	hodik	C	94
	3.	2.1.	Date	engrundlage	94
		3.2	.1.1.	Einteilung in Boden-Klima-Räume	96
		3.2	.1.2.	Simulationsansatz - Konzeption der modellgestützter	1
				Projektion von Klimaerträgen	
		3.2	.1.3.	Interpretation der Ertragssimulation	
			.1.4.	Grenzen des gewählten Modellkonzepts	
		3.2	.1.5.	Berücksichtigung des CO ₂ -Düngungseffektes	101
	3.3.	Erge	ebnis	se	. 102
	3.	3.1.	Ertra	agsentwicklung in der Vergangenheit	102
	3.	3.2.	Ertra	ags- und Klimavariabilität innerhalb der Boden-Klima-	
			Räu	me	103
	3.	3.3.	Ertra	agsrelevantes Klimaänderungssignal	106
	3.	3.4.	Ertra	agsänderung in der Zukunft ohne CO ₂ -Effekt	108
	3.	3.5.	Einf	uss einer erhöhten CO ₂ -Konzentration auf den Ertrag	109
		3.3	.5.1.	Klimafolgen unter Berücksichtigung des CO ₂ -	
				Düngungseffektes	110
		3.3	.5.2.	Berücksichtigung von Schaderregern und	
				Krankheiten	
	3.	3.6.	Anp	assungsoptionen	110
	3.4.	Zus	amm	enfassung	.111
	3.5.	Lite	ratur		.112

<u>Abbildungsverzeichnis</u>

Abb. 3.1: Lage der Boden-Klima-Räume 102 und 104 in Ostdeutschland und					
	Projektregion MORO mit den einzelnen Landkreisen Havelland,				
	Potsdam-Mittelmark, Teltow-Fläming sowie den kreisfreien Städten				
	Potsdam und Brandenburg9				
Abb. 3.2:	Entwicklung des Ertrages (y) und der Ertragsänderungsrate (y') von				
	Winterweizen (a, b), Winterroggen (c, d) und Silomais (e, f) im				
	Zeitraum 1952-2008 mit dem siebenjährigen gleitenden Durchschnitt				
für y und y'					

Tabellenübersicht 91

Tabellenübersicht

Tab. 3.1:	kreisfreien Städten
Tab. 3.2:	Übersicht zur Zuordnung der Landkreise zu den Boden-Klima-Räumen 102 und 104, unterstrichen sind die Landkreise, bzw. kreisfreien Städte der Projektregion Havelland-Fläming
Tab. 3.3:	Witterungsgrößen (xi), Einheiten und Abkürzungen
Tab. 3.4:	Zeitbezüge der in der Modellbildung für die Fruchtarten Winterweizen (WW), WR (Winterroggen) und Silomais (SM) genutzten Klimavariablen 98
Tab. 3.5:	Korrelationskoeffizienten zwischen simulierten und beobachteten Ertrags- änderungsraten für die Validierungsperiode 1996-2006 nach Bundes- ländern und für Ostdeutschland insgesamt (Parametrisierung 1981-95) 99
Tab. 3.6:	Zeitabschnitte und ihre Bezeichnung
Tab. 3.7:	Modifizierende Wirkung des CO ₂ -Düngungseffektes auf C3- und C4- Pflanzen für eine Spanne von relativen Ertragseffekten (aus: Kropp et al.,
	2009)
Tab. 3.8:	Mittelwerte $(\frac{y}{y})$, Variabilitätskoeffizienten (V) und mittlere Ertragsände-
	rungsrate (y') der Praxiserträge auf Landkreisbasis von Winterweizen, Winterroggen und Silomais in den Boden-Klima-Räumen Nordostdeutsches Binnentiefland (HVL) und Ostdeutsches Tiefland (PM + TF) für den Zeitraum 1961-90
Tab. 3.9:	Mittelwerte (\overline{y}), Variabilitätskoeffizienten (V) und mittlere Ertragsände-
	rungsrate (y') der Praxiserträge auf Landkreisbasis von Winterweizen, Winterroggen und Silomais in den Boden-Klima-Räumen Nordostdeutsches Binnentiefland (HVL) und Ostdeutsches Tiefland (PM + TF) für den Zeitraum 1977-2006
Tab. 3.10:	Werte ausgewählter Klimagrößen der Boden-Klima-Räume Nordost- deutsches Binnentiefland (HVL) und Ostdeutsches Tiefland (PM + TF) für die Jahre 1961-1990
Tab. 3.11:	Werte ausgewählter Klimagrößen der Boden-Klima-Räume Nordost- deutsches Binnentiefland (HVL) und Ostdeutsches Tiefland (PM + TF) für
	die Jahre 1977-2006
Tab. 3.12:	Jahrestemperatur (Tmit in °C), Jahresniederschlag (Nied in mm) und jährliche Verdunstung (ETP in mm) als Differenzen des Zeitraums 2011-2040 bzw. 2031-60 gegenüber 1961-90 in den Boden-Klima-Räumen
	Nordostdeutsches Binnentiefland (HVL) und Ostdeutsches Tiefland (PM + TF) und für das Land Brandenburg bei einer Temperaturerhöhung um 0,
Tab. 3.13:	2 und 3K
Tab. 5.15.	jährliche Verdunstung (ETP in mm) als Differenzen des Zeitraums 2011-2040 bzw. 2031-60 gegenüber 1977-2006 in den Boden-Klima-Räumen Nordostdeutsches Binnentiefland (HVL) und Ostdeutsches Tiefland (PM +
	Nordostacatsches bilinentienana (TIVE) una Ostacatsches Henana (FIV +

Tabellenübersicht 92

	TF) und für das Land Brandenburg bei einer Temperaturerhöhung um 0,
	2 und 3K
Tab. 3.14:	Simulierte Ertragsänderungen (%) für Winterweizen (WW); Winterroggen
	(WR) und Silomais (SM) in den Boden-Klima-Räumen Nordostdeutsches
	Binnentiefland (HVL) und Ostdeutsches Tiefland (PM + TF) und im Land
	Brandenburg, Vergleich der Zeiträume 2011-40 und 2031-60 gegenüber
	1961-90 bei einem Temperaturanstieg von OK, 2K und 3K (ohne CO ₂ -
	Düngungseffekt)
Tab. 3.15:	Simulierte Ertragsänderungen (%) für Winterweizen (WW); Winterroggen
	(WR) und Silomais (SM) in den Boden-Klima-Räumen Nordostdeutsches
	Binnentiefland (HVL) und Ostdeutsches Tiefland (PM + TF) und im Land
	Brandenburg, Vergleich der Zeiträume 2011-40 und 2031-60 gegenüber
	1977-2006 bei einem Temperaturanstieg von 0K, 2K und 3K (ohne CO ₂ -
	Düngungseffekt)

Kernaussagen 93

Kernaussagen:

 Die Empfindlichkeit für Ertragsänderungen ist im Ostdeutschen Tiefland (Potsdam-Mittelmark, Teltow-Fläming) durch die im Vergleich höhere Jahresmitteltemperatur und Strahlung, sowie den geringeren Niederschlag und die Standortbedingungen größer als im Nordostdeutschen Binnentiefland (Havelland).

- Ansteigende Temperaturen führen zu Ertragssteigerungen bei Winterweizen, Roggen und Mais. Die Ertragszunahme ist bei 2K Temperaturanstieg am höchsten, ein weiterer Temperaturanstieg führt zu Ertragsrückgängen, insbesondere bei Silomais im Ostdeutschen Tiefland.
- Die ansteigende CO₂-Konzentration kann zusätzlich einen deutlichen Ertragsanstieg bewirken. Allerdings werden die Ertragssteigerungen nach bisherigen Untersuchungen mit einer verminderten Proteinqualität bei Winterweizen einhergehen.

3. Landwirtschaft

3.1. Aufgabenstellung

Die Region Havelland-Fläming zeichnet sich im Vergleich zu anderen landwirtschaftlich genutzten Regionen Deutschlands durch das stärker kontinental geprägte Klima mit geringen Niederschlägen, längeren trockenen und wärmeren Perioden im Frühsommer und oftmals Böden mit geringer Wasserspeicherkapazität aus. Durch den Klimawandel ist die Landwirtschaft mit ihrer direkten Abhängigkeit von Witterungsverläufen besonders betroffen. Unter der Annahme eines Klimawandels, wie er im STAR-Modell mit dem Szenarien der Temperaturerhöhung um 0K, 2K und 3K möglich ist, wird in dem sich anschließenden Kapitel der Zusammenhang zwischen Klimawandel und den Auswirkungen auf die Erträge landwirtschaftlicher Kulturen dargestellt.

3.2. Methodik

3.2.1. Datengrundlage

Für den Modellansatz des statistischen Ertragsmodells wurde der DWD/PIK-Datensatz für meteorologische Stationen Deutschlands für den Zeitraum 1951-2006 verwendet. Er basiert auf täglichen Stationsdaten des deutschen Wetterdienstes für Niederschlags- und Klimastationen. Die Stationsdaten wurden am PIK durch Interpolation zu kompletten synoptischen Klimadatensätzen für den Zeitraum 1951-2006 aufgefüllt. Insgesamt wurden 88 Stationsreihen für die Auswertung herangezogen. Die Klimadaten der Stationsreihen für die Untersuchung wurden landkreisweise, bzw. wie in Kap. 3.2.1.1 beschrieben, in Regionen mit ähnlichen Boden- und Klimaverhältnissen (Boden-Klima-Räumen) durch flächengewichtete Mittelung zusammengefasst. Da sich die Boden-Klima-Räume über die betrachtete Projektregion Havelland-Fläming hinaus erstrecken, wurden für die vollständige Beschreibung der Klimaverhältnisse auch Stationsdaten von Station anderer Landkreise von Brandenburg, aber auch von Mecklenburg-Vorpommern und Sachsen-Anhalt herangezogen. Eine Übersicht über die verwendeten Stationen gibt Tab. 3.1. Als Szenariendaten wurden STAR Daten für den Zeitraum 2007–2060 verwendet. Detaillierte Angaben zu den verwendeten Datensätzen finden sich in der Expertise 1 (vgl. S. 9ff) zum Klima.

Tab. 3.1: Übersicht über die verwendeten Klimastationen in den Landkreisen, bzw. kreisfreien Städten

Name des Landkreises	Nummer des Landkreises	Nummer der Klimastation
Havelland	12063	17127, 17128
Oberhavel	12065	17005, 17010, 17110, 17111, 17112, 17113, 17114
Ostprignitz-Ruppin	12068	17006, 17129, 17130, 17131, 17151
Prignitz	12070	16111, 16115, 16186, 17140, 17146
Ludwigslust	13054	16001, 16121, 16146, 16149, 16150, 16153. 16154, 16199
Müritz	13056	17009, 17106, 17142, 17148
Parchim	13060	16010, 16122, 16168, 17004, 17147
Berlin	11000	17001, 17002, 17117
Brandenburg an der Havel	12051	17124
Cottbus	12052	23001
Frankfurt (Oder)	12053	18110
Potsdam	12054	17007
Dahme-Spreewald	12061	17003, 17118, 22180, 23119
Elbe-Elster	12062	22002, 22115, 22120, 22123, 22124, 22125, 22126, 22127
Oberspreewald-Lausitz	12066	22118, 22119
Oder-Spree	12067	17115, 17116, 17119, 18002, 18106, 18109
Potsdam-Mittelmark	12069	17121, 17122, 17123, 17125
Spree-Neiße	12071	23103, 23116, 23117, 23118
Teltow-Fläming	12072	17120, 22181, 22182, 22183, 22184, 22185
Hoyerswerda	14264	23108
Anhalt-Zerbst	15151	16105, 17107, 17108, 22158
Wittenberg	15171	22011, 22128, 22129, 22130, 22157
Jerichower Land	15358	17126

Die Ertragsdaten vor 1991 wurden statistischen Jahrbüchern der DDR-Bezirke entnommen und in die 2003 gültige Kreisgliederung flächengewichtet umgerechnet. Die Daten seit 1991 entstammen Veröffentlichungen der Statistischen Landesämter. Änderungen der Kreisgrenzen wurden analog zur oben beschriebenen Vorgehensweise bei der Aufbereitung von DDR-Daten berücksichtigt. Bei der Berechnung der Ertragsparameter wurden die Ertragsdaten kreisfreier Städte mit ihren eher kleineren landwirtschaftlich genutzten Flächen nicht berücksichtigt.

3.2.1.1. Einteilung in Boden-Klima-Räume

Die Boden-Klima-Räume, klassifiziert nach Roßberg (2007) wurden mit den Landkreisen in Deutschland verschnitten. Alle Landkreise, deren Fläche zu 70% innerhalb eines Boden-Klima-Raumes (BKR) lagen, wurden dem entsprechenden BKR zugeordnet. Die Region Havelland-Fläming des MORO-Projektes liegt in Boden-Klima-Räumen, die in ihrer Ausdehnung von Mecklenburg-Vorpommern bis nach Sachsen und Sachsen-Anhalt hineinreichen (Abb. 3.1).

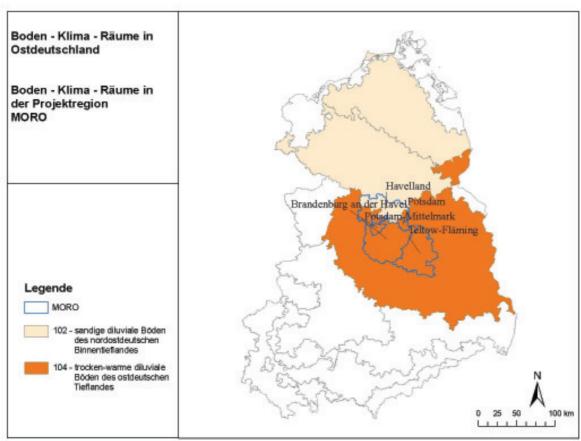


Abb. 3.1: Lage der Boden-Klima-Räume 102 und 104 in Ostdeutschland und der Projektregion MORO mit den einzelnen Landkreisen Havelland, Potsdam-Mittelmark, Teltow-Fläming sowie den kreisfreien Städten Potsdam und Brandenburg

Die Projektregion MORO liegt in den beiden Boden-Klima-Räumen ,Nordostdeutschen Binnentiefland' (BKR 102) mit dem Landkreis Havelland und dem ,Ostdeutschen Tiefland' (BKR 104) mit den Landkreisen Potsdam-Mittelmark und Teltow-Fläming. Zwar befinden sich 30% der Fläche des Havellandes - der Südosten und –westen im Ostdeutschen Tiefland, aufgrund der oben beschriebenen Zuordnung wird das Havelland jedoch dem Norddeutschen Binnentiefland zugerechnet (Tab. 3.2).

Tab. 3.2: Übersicht zur Zuordnung der Landkreise zu den Boden-Klima-Räumen 102 und 104, unterstrichen sind die Landkreise, bzw. kreisfreien Städte der Projektregion Havelland-Fläming

Boden-Klima-	Boden-Klima-Raum (Bezeich-	Landkreis bzw. kreisfreie
Raum (Nummer)	nung)	Stadt
102	sandige diluviale Böden des	<u>Havelland</u>
	nordostdeutschen Binnentief-	Oberhavel
	landes	Ostprignitz-Ruppin
		Prignitz
		Ludwigslust
		Müritz
		Parchim
104	trocken-warme diluviale Böden	Brandenburg an der Havel
	des ostdeutschen Tieflandes	Cottbus
		Frankfurt(Oder)
		<u>Potsdam</u>
		Dahme-Spreewald
		Elbe-Elster
		Oberspreewald-Lausitz
		Oder-Spree
		Potsdam-Mittelmark
		Spree-Neiße
		<u>Teltow-Fläming</u>
		Hoyerswerda
		Dessau
		Anhalt-Zerbst
		Wittenberg
		Jerichower Land

Bei der Mittelwertbildung des Klimas für einzelne BKRs wurde die Größe der Landkreise berücksichtigt. Die Berechnung der Mittelwerte eines BKRs erfolgte flächengewichtet.

Analog dazu wurden die Mittelwerte für das Land Brandenburg flächengewichtet aus den Daten der Landkreise berechnet.

3.2.1.2. Simulationsansatz - Konzeption der modellgestützten Projektion von Klimaerträgen

Die modellgestützte Ertragsprojektion erfolgt in fünf Schritten, dabei wird der Modellansatz von Wechsung et al. (2008) genutzt:

- 1. Berechnung der Ertragsratenmodelle anhand beobachteter Ertrags- und Klimadaten der Vergangenheit
- 2. Validierung des Ertragsratenmodells für eine in 1. nicht genutzte Periode des rezenten Klimas

3. Simulation der jährlichen Ertragsänderungsraten für eine synthetische Klimareihe

- 4. Integrative Verknüpfung der jährlichen Ertragsänderungsraten
- 5. Ermittlung der Szenarieneffekte ohne und mit CO₂-Düngungseffekt

zu 1.

Die Wirkung des Klimas auf den Ertrag wurde mit einem statistischen Modell dargestellt, welches die Beziehung der jährlichen Ertragsänderung zur Klimaänderung beschreibt. Das Ertragsmodell setzt die relativen Ertragsänderungen im Vergleich zum Vorjahr, $y'_{t,t-1}=y_t/y_{t-1}$ in Beziehung zu den relativen Änderungen summarischer Witterungsgrößen, $x'(i)_{t,\ t-1}=x(i)_t/x(i)_{t-1}$. Abhängig von der Kultur wurden verschiedene Witterungsgrößen (Tab. 3.3) in definierten Zeitabschnitten (Tab. 3.4) in Bezug zu den jährlichen Ertragsänderungen von Winterweizen, Silomais und Roggen gesetzt.

Tab. 3.3: Witterungsgrößen (xi), Einheiten und Abkürzungen

Beschreibung der Witterungsgrößen x _i	Einheit	Abkürzung
Tagesmitteltemperatur	°C	Т
Niederschlagssumme	mm	NS
Potentielle Evapotranspiration (= Verdunstungsanspruch, nach Turc-Ivanov)	mm	ETP
Tage ohne Niederschlag	Anzahl	oNied
Luftfeuchtigkeit	%	Relf
Temperaturspannweite	°C	Tsw
Strahlung	J/m²	Str
Strahlung/Temperatur	J/m²/°C	Str/T
Temperatursumme mit T >6°C	°C	Tsum

Tab. 3.4: Zeitbezüge der in der Modellbildung für die Fruchtarten Winterweizen (WW), WR (Winterroggen) und Silomais (SM) genutzten Klimavariablen

Zeitabschnitt	Abkürzung	Kultur
Mai - Oktober	Mai-Okt	WW, WR, SM
Mai – Juni	Mai-Jun	WW, WR, SM
Mai – Juli	Mai-Jul	WW, WR, SM
Juli – August	Jul-Aug	WW, WR, SM
August-Oktober	Aug-Okt	SM

Als Modellansatz wurde folgendes allgemeines Modell verwendet:

$$y' = y_0' \prod_{i=1}^n x'(i)^{a_i}$$
 mit

 $y^{'}$ - relativer Änderungsfaktor des Ertrages im Vergleich zum Vorjahr (1- keine Änderung)

 $y_0^{'}$ - mittlerer relativer Ertragsanstieg im Vergleich zum Vorjahr (Ertragssteigerungsrate durch technologischen Fortschritt)

 $x^{'}(i)$ - relativer Änderungsfaktor der i-ten Einflussvariablen im Vergleich zum Vorjahr (1- keine Änderung)

- Parameter

Für die Parameterschätzung wurde auf die logarithmisierte Form

 $\log(y') = \log(y'_0) + a_1 \log(x'_1) + a_2 \log(x'_2) + ... + a_i \log(x'_i) + a_n \log(x'_n), i = 1,...,n$ zurückgegriffen.

Die Modellschätzung erfolgte für die Jahre 1981-1995 auf Ebene der Landkreise für alle Kreise in Ostdeutschland.

zu 2.

Nach ihrer Parametrisierung wurden die Landkreismodelle genutzt, um die jährlichen Ertragsänderungsraten, ausgehend von den beobachteten Klimadaten für die Jahre 1996 bis 2006 zu simulieren. Die simulierten Mittel der jährlichen Änderungsraten für Brandenburg, Mecklenburg-Vorpommern, Sachsen-Anhalt und Ostdeutschland insgesamt wurden mit den beobachteten Änderungsraten im Validierungszeitraum verglichen.

Die Korrelationskoeffizienten für Winterweizen, Winterroggen und Silomais ist für diejenigen Bundesländer dargestellt, über deren Territorien sich die BKR 102 und 104 erstrecken, außerdem für Ostdeutschland insgesamt (Tab. 3.5).

Tab. 3.5: Korrelationskoeffizienten zwischen simulierten und beobachteten Ertragsänderungsraten für die Validierungsperiode 1996-2006 nach Bundesländern und für Ostdeutschland insgesamt (Parametrisierung 1981-95)

Bundesland	Winterweizen	Winterroggen	Silomais
Brandenburg	0,63**	0,86***	0,92***
Mecklenburg- Vorpommern	0,62**	0,70**	0,77***
Sachsen-Anhalt	0,80***	0,47ns	0,92***
Ostdeutschland	0,73**	0,67**	0,93***

^{***} p \leq 0,01, ** p \leq 0,05, * p \leq 0,1, Irrtumswahrscheinlichkeit für die Signifikanz des Zusammenhangs

Die Übereinstimmung zwischen simulierten und beobachteten Ertragsänderungsraten war für die Bundesländer mit Ausnahme von Winterroggen in Sachsen-Anhalt sehr gut. Eine befriedigende Anpassung wurde ebenfalls auf der Ebene

Ostdeutschlands für alle betrachteten Kulturen erhalten. Aufgrund der Validierungsergebnisse war somit die Projektion des Ertrages möglich.

zu 3.

Zunächst erfolgte die Simulation der jährlichen Ertragsänderungsraten für eine synthetische Klimareihe, getrennt für jeden Landkreis, in dem ein valides Modell geschätzt wurde. Hierzu wurden der DWD/PIK-Datensatz von 1951-2006 genutzt. Anschließend wurde die Simulationen mit den Szenariendatensätzen des STAR-Modells mit Temperaturerhöhung um 0K, 2K und 3K durchgeführt. Die simulierten jährlichen Ertragsänderungsraten wurden zu einer synthetischen Reihe für den Zeitraum 1951-2060 zusammengefügt.

Die landkreisweisen Ertragsänderungsraten werden zu Änderungsraten für Boden-Klima Räume und das Land insgesamt gemittelt.

zu 4.

Durch multiplikative Verknüpfung der gemittelten Ertragsänderungsraten $1, \dots, t, \dots$ je Boden-Klima-Raum und für das Land insgesamt gelangt man zu der relativen Ertragsänderung zum Zeitpunkt t im Vergleich zum Ertrag am Zeitpunkt t=0 (integrative Komponente). Durch Multiplikation der relativen Ertragsänderung mit dem Basisertrag (y(0)) erhält man den Absolutertrag y(t). Der Bezug zum Absolutertrag wird irrelevant, wenn Erträge zweier Zeitpunkte, bzw. mittlere Erträge zweier Perioden miteinander ins Verhältnis gesetzt werden. Der Bezugsertrag kürzt sich heraus und man erhält die relative Ertragsänderung zwischen zwei Perioden.

zu 5.

Die Szenarieneffekte ergeben sich, indem die mittleren Relativerträge der Szenarienzeiträume (2011-40 und 2031-60) mit denen der Basiszeiträume (1961-90 und 1977-2006) in Beziehung gesetzt werden. Der Bezug zum Basisniveau kürzt sich hierbei heraus. Der mittlere Relativertrag zur Mitte einer Periode wird aus linearen Trendfunktionen abgelesen, die über Anfang und Ende der betrachteten Perioden hinausgehen. Hierdurch wird der Einfluss zufälliger Häufungen von "guten" und "schlechten" Ertragsjahren in einem Zeitraum auf das Vergleichsergebnis gemindert.

Tab. 3.6: Zeitabschnitte und ihre Bezeichnung

Zeitabschnitt	Bezeichnung
1961-1990	Basiszeitraum 1
1977-2006	Basiszeitraum 2
2011-2040	Szenarienperiode 1
2031-2060	Szenarienperiode 2

3.2.1.3. Interpretation der Ertragssimulation

Die simulierten Ertragsänderungen sind ausschließlich klimageprägt. Sie beziehen sich auf das mittlere technologische Ertragsniveau der Kontrollperiode und beinhalten keine Aussagen über die technologischen Möglichkeiten zu einer weiteren Ertragssteigerung durch die Einführung neuer Sorten und Anbauverfahren. Klimabedingte Ertragsverluste können durch den technologischen Ertragsfortschritt vermindert, aber auch überkompensiert werden. Dies wird hier nicht betrachtet.

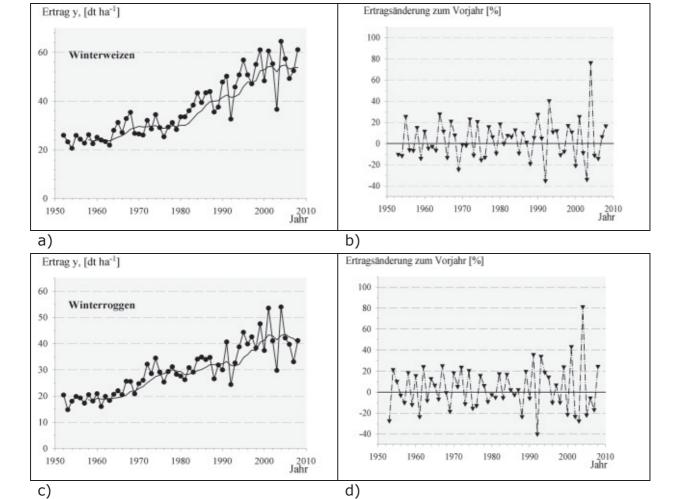
3.2.1.4. Grenzen des gewählten Modellkonzepts

Die Gültigkeitsgrenzen des Modells werden durch den in der Vergangenheit beobachteten Schwankungsbereich des Klimas gesetzt. In dem Maße wie das neue Klima den Schwankungsbereich versetzt, können Toleranzschwellen der Ertragsbildung überschritten werden, die in der Vergangenheit nicht erreicht wurden. Diese Effekte werden durch den gewählten Modellansatz nicht erfasst.

3.2.1.5. Berücksichtigung des CO₂-Düngungseffektes

Die direkte Wirkung des Anstiegs der atmosphärischen CO_2 -Konzentration auf den Ertragseffekt im Vergleich zum Klima der Kontrollperiode wird nachträglich berücksichtigt. Hierzu werden CO_2 -abhängige Korrekturfaktoren kalkuliert. Die Faktoren vermindern negative Ertragseffekte infolge von Wasserstress und verstärken positive Ertragseffekte (vgl. Wechsung, 2008). Durch die stimulierende Wirkung von erhöhtem CO_2 werden Ertragsverluste gemindert und Ertragsgewinne gesteigert.

Die atmosphärische CO_2 -Konzentration wird nach dem Berner Modell und dem Emissionsszenario A1B bis 2026 von gegenwärtig 387 ppm auf 432 ppm ansteigen und im Jahr 2050 bei 523 ppm liegen. Die Ergebnisse der CO_2 -abhängigen Korrekturen für eine Spanne von Szenarioeffekten von -40 bis +30% bezüglich der hier betrachteten Zeitspannen ist in Tab. 3.7 für das Emissionsszenario A1B zusammenfassend dargestellt.


Tab. 3.7: Modifizierende Wirkung des CO₂-Düngungseffektes auf C3- und C4-Pflanzen für eine Spanne von relativen Ertragseffekten (aus: Kropp et al., 2009)

-		•		
·	C3-Pflanze (Weizen, Roggen)		C4-Pflanze (Mais)	
Jahr	2026	2056	2026	2056
CO ₂ -Konzentration (ppm)	435	547	435	547
Ertragseffekt				
-40	-35	-32	-38	-34
-30	-25	-18	-27	-23
-20	-14	-6	-17	-12
-10	-3	5	-7	-1
0	7	13	3	6
10	18	24	13	17
20	28	36	24	27
30	39	47	34	38

3.3. Ergebnisse

3.3.1. Ertragsentwicklung in der Vergangenheit

Die Winterweizen- und Winterroggenerträge in Brandenburg haben sich seit Anfang der 60er Jahre bis heute verdoppelt. Die schwarze, durchgezogene Linie zeigt die Entwicklung des 7jährigen, gleitenden durchschnittlichen Ertrages (Abb. 3.2, a und c).

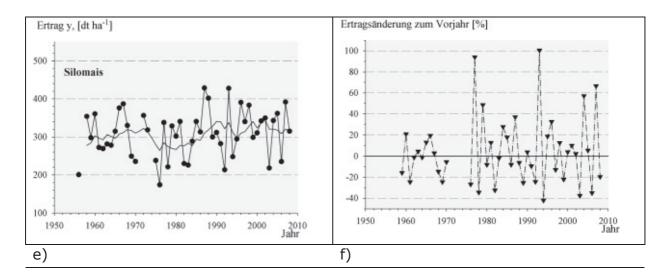


Abb. 3.2: Entwicklung des Ertrages (y) und der Ertragsänderungsrate (y') von Winterweizen (a, b), Winterroggen (c, d) und Silomais (e, f) im Zeitraum 1952-2008 mit dem siebenjährigen gleitenden Durchschnitt für y und y'

Die jährlichen Ertragsschwankungen, dargestellt als prozentuale Zu- oder Abnahme gegenüber dem Vorjahr, liegen zumeist innerhalb des 30% Abweichungsbereiches. Seit den 90er Jahren haben allerdings die jährlichen Ertragsschwankungen bei Wintergetreide stärker zugenommen (Abb. 3.2, b und d).

In Brandenburg haben sich die Erträge von Silomais nur geringfügig erhöht. Auffallend sind jedoch die starken, jahresweisen Ertragsschwankungen in einem Bereich von (-40%) bis (+100%) (Abb. 3.2, e und f).

3.3.2. Ertrags- und Klimavariabilität innerhalb der Boden-Klima-Räume

In den folgenden Tabellen (Tab. 3.8 - Tab. 3.10) sind verschiedene Ertragskennziffern der untersuchten Kulturen Weizen, Roggen und Mais in den einzelnen Boden-Klima-Räumen dargestellt. Neben dem mittleren Ertrag (\overline{y}) wird die Abweichung vom Ertragsmittelwert als Variabilitätskoeffizient (V) angegeben. Je höher der Variabilitätskoeffizient, desto größer waren die Ertragsunterschiede von Jahr zu Jahr. Dieses ist bedingt durch Umwelteinflüsse (Klima) oder Standortbedingungen (Bodengüte). In der Vergangenheit ist der Ertrag aller Kulturen angestiegen (Abb. 3.2). Der jährliche Ertragszuwachs innerhalb eines bestimmten Zeitraums ist in den folgenden Tabellen als Ertragsänderungsrate ($\overline{y'}$) aufgeführt. In der Vergangenheit lag im Zeitraum von 1961-90 im Ostdeutschen Tiefland das durchschnittliche Ertragsniveau bei Wintergetreide leicht über dem Niveau im Nordostdeutschen Binnentiefland (Tab. 3.8). In den Jahren 1977-2006 sind die durchschnittlichen Erträge weiter angestiegen (Tab. 3.9). Die jährliche Ertragszunahme war bei Winterweizen mit gut 2%, (bzw. 3% im Basiszeitraum 2) geringfügig höher als bei Winterroggen.

Tab. 3.8: Mittelwerte (y), Variabilitätskoeffizienten (V) und mittlere Ertragsänderungsrate ($^{\overline{y'}}$) der Praxiserträge auf Landkreisbasis von Winterweizen, Winterroggen und Silomais in den Boden-Klima-Räumen Nordostdeutsches Binnentiefland (HVL) und Ostdeutsches Tiefland (PM + TF) für den Zeitraum 1961-90

Kultur	Ertrags- kennziffer	Nordostdeutsches Binnentiefland (HVL)	Ostdeutsches Tiefland (PM + TF)
	\overline{y} (dt ha ⁻¹)	31,5	33,0
Winterweizen	V (%) von \overline{y}	21,0	22,7
	<u>y</u> ' (%)	2,2	2,2
	\overline{y} (dt ha ⁻¹)	27,3	27,6
Winterroggen	V (%)von \overline{y}	16,6	20,8
	<u>y</u> ' (%)	1,5	1,3
	\overline{y} (dt ha ⁻¹)	309,5	299,3
Silomais	V (%)von \overline{y}	17,9	23,2
	<u>y</u> ' (%)	-0,2	-2,0

Der Variabilitätskoeffizient bei Getreide war im Zeitraum von 1961-90 im Nordostdeutschen Binnentiefland um bis zu 3% geringer, dies deutet auf günstigere Boden- und Klimaverhältnisse hin als im Ostdeutschen Tiefland. Die in Abb. 3.2 b und d erkennbare Zunahme der jährlichen Ertragsschwankungen ab den 90er Jahren lässt sich am Anstieg des Variabilitätskoeffizienten vor allem bei Wintergetreide im Norddeutschen Binnentiefland ablesen (Tab. 3.9).

Tab. 3.9: Mittelwerte $(\frac{y}{y})$, Variabilitätskoeffizienten (V) und mittlere Ertragsänderungsrate $(\frac{y}{y})$ der Praxiserträge auf Landkreisbasis von Winterweizen, Wintervoggen und Silomais in den Boden-Klima-Räumen Nordostdeutsches Binnentiefland (HVL) und Ostdeutsches Tiefland (PM + TF) für den Zeitraum 1977-2006

Kultur	Ertrags- kennziffer	Nordostdeutsches Binnentiefland (HVL)	Ostdeutsches Tiefland (PM + TF)		
	\overline{y} (dt ha ⁻¹)	47,3	45,9		
Winterweizen	V (%) von \overline{y}	26,1	21,3		
	<u>y</u> ' (%)	2,9	3,0		
	\overline{y} (dt ha ⁻¹)	37,8	34,6		
Winterroggen	V (%)von \overline{y}	24,0	18,6		
	<u>y</u> ' (%)	1,9	1,4		
	\overline{y} (dt ha ⁻¹)	325,0	308,2		
Silomais	V (%)von \overline{y}	15,6	22,3		
	<u>y</u> ' (%)	1,9	3,1		

Eine Ertragszunahme von Silomais um etwa 15 dt ha⁻¹ hat es im Nordostdeutschen Binnentiefland von 1977-2006 gegenüber 1961-90 gegeben. Die Ertragsunterschiede von Jahr zu Jahr sind im Ostdeutschen Tiefland wesentlich ausgeprägter. Dies wird durch den Variabilitätskoeffizient deutlich, der im Ostdeutschen Tiefland mit rund 23% deutlich höher als im Nordostdeutsches Binnentiefland mit 16% liegt (Tab. 3.10).

Tab. 3.10: Werte ausgewählter Klimagrößen der Boden-Klima-Räume Nordostdeutsches Binnentiefland (HVL) und Ostdeutsches Tiefland (PM + TF) für die Jahre 1961-1990

Boden-Klima-Raum	Nordostdeutsches Binnen- tiefland (HVL)	Ostdeutsches Tiefland (PM + TF)		
	Jah	nr		
Tagesmitteltemperatur [°C]	8,4	8,9		
Niederschlagssumme [mm]	580,0	548,9		
Potentielle Verdunstung [mm]	599,7	632,8		
Globalstrahlung [J/m²]	35,3	36,4		
	Mai-Oktober			
Tagesmitteltemperatur [°C]	14,2	14,8		
Niederschlagssumme [mm]	318,1	308,5		
Potentielle Verdunstung [mm]	503,1	526,9		
Strahlung [J/m²]	26,1	26,6		

Ein Vergleich der Klimagrößen der beiden Boden-Klima-Räume zeigt, dass die Jahresmitteltemperatur, aber auch die durchschnittliche Temperatur während der Hauptvegetationszeit von Mai-Oktober im Ostdeutschen Tiefland um bis zu 0.7°C höher lag (Tab. 3.10 und Tab. 3.11).

Die höhere Temperatur hatte eine höhere potentielle Verdunstung bei einem geringeren Niederschlagsniveau zur Folge. Auf Standorten in Potsdam-Mittelmark und Teltow-Fläming mit Böden von geringer Wasserspeicherkapazität führte dies vor allem bei den Sommerkulturen wie Silomais in Jahren mit längerer Vorsommertrockenheit zu stärkeren, jährlichen Ertragsschwankungen.

Tab. 3.11: Werte ausgewählter Klimagrößen der Boden-Klima-Räume Nordostdeutsches Binnentiefland (HVL) und Ostdeutsches Tiefland (PM + TF) für die Jahre 1977-2006

Boden-Klima-Raum	Nordostdeutsches Binnen- tiefland (HVL)	Ostdeutsches Tiefland (PM + TF)	
	Jah	nr	
Tagesmitteltemperatur [°C]	8,9	9,4	
Niederschlagssumme [mm]	595,0	555,8	
Potentielle Verdunstung [mm]	615,4	651,5	
Globalstrahlung [J/m²]	35,6	36,8	
	Mai-Oktober		
Tagesmitteltemperatur [°C]	14,6	15,3	
Niederschlagssumme [mm]	323,9	309,2	
Potentielle Verdunstung [mm]	511,3	537,8	
Strahlung [J/m²]	26,1	26,6	

3.3.3. Ertragsrelevantes Klimaänderungssignal

In Brandenburg wird ein Anstieg der Jahresmitteltemperaturen gegen Mitte dieses Jahrhunderts erwartet. Um die Bandbreite der Erwartungen besser erfassen zu können, wurden 3 Szenarien gegenübergestellt: die Temperaturerhöhung um 0, 2 und 3K. Hierbei wurde jeweils die mittlere Realisierung gewählt.

Nach dem Modell STAR ergeben sich bei einem Vergleich mit dem Zeitraum 1961-90 die in Tab. 3.12 dargestellten Entwicklungen.

In der Szenarienperiode 1 steigen die mittleren Temperaturen voraussichtlich, je nach Temperaturanstiegsszenario, um 0,8 - 2K, in der Szenarienperiode 2 auf bis zu 3,3K gegenüber dem Vergleichszeitraum von 1961-1990 an. Gleichzeitig geht die die Gesamtmenge an Niederschlag im Mittel des Landes zurück. Allerdings werden sich die mittleren Niederschläge im Nordostdeutschen Binnentiefland mit dem Landkreis Havelland kaum ändern. Im Ostdeutschen Tiefland mit den Landkreisen Potsdam-Mittelmark und Teltow-Fläming muss dagegen von leicht zurückgehenden Niederschlägen ausgegangen werden. Zusammen mit einem stärkeren Ansteigen der Temperatur bei einer durchschnittlich höheren Mitteltemperatur wird die Verdunstung dadurch stärker zunehmen. Zur Mitte des Jahrhunderts werden die Unterschiede zwischen den Boden-Klima-Räumen weiter zunehmen.

Tab. 3.12: Jahrestemperatur (Tmit in °C), Jahresniederschlag (Nied in mm) und jährliche Verdunstung (ETP in mm) als Differenzen des Zeitraums 2011-2040 bzw. 2031-60 gegenüber 1961-90 in den Boden-Klima-Räumen Nordostdeutsches Binnentiefland (HVL) und Ostdeutsches Tiefland (PM + TF) und für das Land Brandenburg bei einer Temperaturerhöhung um 0, 2 und 3K

		2011-40 vs 1961-90			2031-60 vs 1961-90		
BKR	Szena- rio	Tmit [°C]	Nied [mm]	ETP [mm]	Tmit [°C]	Nied [mm]	ETP [mm]
Nordost-	0K	0.8	18.6	35.1	1.1	19.1	50.8
deutsches Binnentief-	2K	1.5	12.1	78.3	2.4	-10.6	127.7
land (HVL)	3K	1.9	0.5	104.8	3.1	-17.8	182.3
Ostdeut-	0K	0.8	9.0	37.8	1.1	10.9	54.1
sches Tief- land	2K	1.5	2.4	81.4	2.4	-17.5	136.0
(PM+TF)	3K	2.0	-29.0	112.6	3.3	-52.5	195.5
Land Branden- burg	0K	0.8	10.8	36.5	1.1	11.7	52.2
	2K	1.6	0.7	80.2	2.4	-21.1	132.8
	3K	2.0	-22.6	109.1	3.2	-47.1	189.4

Tab. 3.13: Jahrestemperatur (Tmit in °C), Jahresniederschlag (Nied in mm) und jährliche Verdunstung (ETP in mm) als Differenzen des Zeitraums 2011-2040 bzw. 2031-60 gegenüber 1977-2006 in den Boden-Klima-Räumen Nordostdeutsches Binnentiefland (HVL) und Ostdeutsches Tiefland (PM + TF) und für das Land Brandenburg bei einer Temperaturerhöhung um 0, 2 und 3K

		2011-40 vs 1977-2006			2031-60 vs 1977-2006			
BKR	Szena- rio	Tmit [°C]	Nied [mm]	ETP [mm]	Tmit [°C]	Nied [mm]	ETP [mm]	
Nordost-	0K	0.4	3.6	19.4	0.6	4.1	35.1	
deutsches Binnentief-	2K	1.1	-2.9	62.6	1.9	-25.6	112.0	
land (HVL)	3K	1.5	-14.5	89.1	2.7	-32.8	166.6	
Ostdeut-	0K	0.4	2.1	19.1	0.6	4.0	35.4	
sches Tief- land	2K	1.1	-4.6	62.6	2.0	-24.4	117.3	
(PM+TF)	3K	1.5	-35.9	93.9	2.8	-59.4	176.8	
Land Branden- burg	0K	0.4	3.9	18.4	0.6	4.8	34.1	
	2K	1.1	-6.2	62.1	2.0	-28.0	114.7	
	3K	1.5	-29.5	91.0	2.7	-53.9	171.3	

Der Vergleich der Witterungsparameter der Szenarienperioden mit dem zweiten Zeitraum 1977-2006 zeigt eine parallele Entwicklung. Durch den in diesem Zeitraum bereits eingegangenen Temperaturanstieg fällt die Temperatur- und Verdunstungsänderung geringer aus.

3.3.4. Ertragsänderung in der Zukunft ohne CO₂-Effekt

Ein Vergleich der zukünftigen Ertragsänderung mit dem Zeitraum 1961-90 zeigt, dass die voraussichtlichen klimatischen Ertragsaussichten von Wintergetreide in der Modellregion für die kommenden Jahrzehnte als günstig bezeichnet werden können. Mit ansteigenden Temperaturen um bis zu 2K bei einem geringfügigen Rückgang des Jahresniederschlages werden die Getreideerträge um bis zu 9% ansteigen (Tab. 3.14). Ein Temperaturanstieg um 3K wird von Getreide noch toleriert, die Ertragsaussichten von Silomais werden jedoch insbesondere im Ostdeutschen Tiefland zurückgehen.

Tab. 3.14: Simulierte Ertragsänderungen (%) für Winterweizen (WW); Winterroggen (WR) und Silomais (SM) in den Boden-Klima-Räumen Nordostdeutsches Binnentiefland (HVL) und Ostdeutsches Tiefland (PM + TF) und im Land Brandenburg, Vergleich der Zeiträume 2011-40 und 2031-60 gegenüber 1961-90 bei einem Temperaturanstieg von 0K, 2K und 3K (ohne CO₂-Düngungseffekt)

		0K		2K		3K	
BKR	Kultur	2011- 40 vs 1961- 90	2031- 60 vs 1961- 90	2011- 40 vs 1961- 90	2031- 60 vs 1961- 90	2011- 40 vs 1961- 90	2031- 60 vs 1961- 90
Nordostdeut-	WW	2	3	9	6	1	0
sches Bin- nentiefland	WR	5	3	7	6	4	3
(HVL)	SM	6	3	6	1	2	-1
Ostdeutsches	WW	1	4	5	2	3	2
Tiefland (PM+TF)	WR	7	6	8	5	6	5
	SM	14	7	9	1	-6	2
Land Bran- denburg	WW	3	4	6	3	3	2
	WR	5	4	7	5	5	2
	SM	13	10	9	2	-2	1

Bei einem Vergleich der Ertragsänderung der Szenarienperioden mit der Basisperiode von 1977-2006 zeigt sich, dass die ansteigenden Temperaturen insbesondere im Ostdeutschen Tiefland die Ertragsaussichten von Silomais deutlich verschlechtern werden. Bereits zur Mitte des Jahrhunderts muss bei einem Temperaturanstieg von 2K mit einem Ertragsrückgang gerechnet werden, und ein Anstieg der Temperatur um 3K dürfte Ertragsrückgänge um bis zu 16% zur Folge haben. Kaum Auswirkungen hat dagegen ein Anstieg der Temperatur im Havelland (Tab. 3.15).

Tab. 3.15: Simulierte Ertragsänderungen (%) für Winterweizen (WW); Winterroggen (WR) und Silomais (SM) in den Boden-Klima-Räumen Nordostdeutsches Binnentiefland (HVL) und Ostdeutsches Tiefland (PM + TF) und im Land Brandenburg, Vergleich der Zeiträume 2011-40 und 2031-60 gegenüber 1977-2006 bei einem Temperaturanstieg von OK, 2K und 3K (ohne CO₂-Düngungseffekt)

		0K		2K		3K	
BKR	Kultur	2011- 40 vs 1977- 2006	2031- 60 vs 1977- 2006	2011- 40 vs 1977- 2006	2031- 60 vs 1977- 2006	2011- 40 vs 1977- 2006	2031- 60 vs 1977- 2006
Nordostdeut-	WW	4	5	11	9	3	2
sches Binnen-	WR	2	0	4	3	1	0
tiefland (HVL)	SM	3	1	3	-1	0	-4
Ostdeutsches	WW	1	3	5	2	2	2
Tiefland	WR	3	2	4	1	2	1
(PM+TF)	SM	2	-5	-2	-10	-16	-9
Land Bran- denburg	WW	3	4	6	3	3	2
	WR	2	1	4	2	2	0
	SM	2	-1	-1	-8	-11	-8

Zusammenfassend lässt sich sagen, dass der Vergleich der Ertragsänderungen in den Szenarienzeiträumen der Zukunft mit denen unterschiedlicher Basiszeiträume der Vergangenheit zunächst einmal zeigt, dass im 2K Szenario generell für alle Leitfruchtarten Ertragssteigerungen um bis zu 9 % (Tab. 3.14), bzw. Ertragssteigerungen bei Getreide um bis zu 11 % zu erwarten sind (Tab. 3.15). Zur Mitte des Jahrhunderts werden die Ertragszuwächse zurückgehen.

Deutlich erkennbar ist der dämpfende Einfluss eines Temperaturanstieges von 3K auf die Ertragsaussichten. Während die Erträge von Weizen und Roggen nahezu unverändert bleiben, verschlechtern sich die Erträge vom Silomais deutlich um bis zu -16%. Dies trifft insbesondere das Ostdeutsche Tiefland mit den Landkreisen Teltow-Fläming und Potsdam-Mittelmark.

3.3.5. Einfluss einer erhöhten CO₂-Konzentration auf den Ertrag

Dem Klimaszenarium A1B liegt nach dem Bern-CC Modell ein Anstieg der gegenwärtigen CO₂-Konzentration von 386 ppm auf 523 ppm im Jahr 2050 zugrunde, was einer Verdopplung des vorindustriellen Niveaus entspricht. Da die CO₂-Erhöhung die Photosynthese stimuliert und die Verdunstungsverluste der Pflanzen vermindert (Amthor 1998; Tubiello, et al. 2007), werden die Ertragsänderungen (Tab. 3.14 und Tab. 3.15) durch die in Kap. 3.2.1.5 beschriebenen Korrekturfaktoren ergänzt. Hierdurch könnte im Mittel in Brandenburg bei einem Temperaturanstieg von 2K, welches dem Szenario A1B entspricht, ein Ertragsan-

stieg von bis zu 16 % bei Winterweizen (3+13) im Zeitraum 2031-60 gegenüber 1961-90 erzielt werden. Bei Silomais wäre es bei dem Temperaturanstiegsszenario von 2 K im Mittel für Brandenburg etwa 8 % an Ertragszuwachs im Zeitraum 2031-60 gegenüber den Jahren 1961-90.

3.3.5.1. Klimafolgen unter Berücksichtigung des CO₂-Düngungseffektes

Bezüglich der Wirksamkeit des CO_2 -Düngungseffektes ist generell ist zu beachten, dass die kompensierende Wirkung von erhöhtem CO_2 an eine ausreichende Stickstoffversorgung der Pflanzen gebunden ist. Da aus unterschiedlichen Gründen (Klima- und Gewässerschutz, Rohstoffverknappung, Nachfrageanstieg) von einem deutlichen Anstieg der Preise für Stickstoffdünger auszugehen ist, kann der CO_2 -Düngungseffekt nicht ohne weiteres kostenneutral realisiert werden. Dies wird nur möglich sein, wenn gleichzeitig die Effizienz der Stickstoffdüngung erheblich gesteigert wird.

Das schlechte Wasserhaltevermögen auf einigen Flächen des Untersuchungsgebietes wird trotz ausreichendem Stickstoffeinsatz und höheren CO₂-Konzentrationen der limitierende Faktor bei der Maisproduktion sein.

Zur tendenziell ertragsstabilisierenden Wirkung von erhöhtem CO_2 ist noch anzumerken, dass sie zulasten der Proteinzusammensetzung geht, was sich insbesondere bei Weizen qualitätsmindernd auswirkt (Wu et al. 2004; Högy und Fangmeier 2008; Piikki et al. 2008).

3.3.5.2. Berücksichtigung von Schaderregern und Krankheiten

Die Abschätzung der Ertragswirkung kann jedoch keine ertragsmindernde Faktoren wie neue Schaderreger oder Krankheiten berücksichtigen. Zwar wurden diese bei der Modellbildung implizit einbezogen, soweit sie in der Vergangenheit eine ertragsrelevante Bedeutung hatten. Für die Zukunft können aber die als Folge des Klimawandels neu aufgetretenen Schaderreger und ihre Bedeutung für die Ertragssicherheit nicht abgeschätzt werden.

3.3.6. Anpassungsoptionen

Zukünftig wird während der Vegetationszeit weniger Wasser für die Pflanzen zur Verfügung stehen. Der Grund hierfür ist die ansteigende Verdunstung bei etwa gleichbleibendem Niederschlagsniveau. Hinzu kommen zunehmend längere niederschlagsfreie Phasen im Mai-Juli. Besonders auf grundwasserfernen Standorten und Böden mit geringem Wasserhaltevermögen werden Anpassungsmaßnahmen erforderlich sein.

Als mögliche Anpassungen an die sich veränderten Produktionsbedingungen kommen auf diesen Standorten daher

- a) eine Ausweitung der Beregnungsflächen
- b) ein zunehmender Anbau trockenresistenter Pflanzenarten (z.B. Hirse)

c) der Anbau von mehrjährigen Pflanzen, welche die Winterfeuchtigkeit besser ausnutzen können, wie beispielsweise Elefantengras oder Miscanthus zur Biomasseproduktion in Frage.

Flankiert werden sollten die Anpassungsmaßnahmen der Landwirtschaft von Maßnahmen zur Verminderung von Verdunstungsverlusten. Hierbei stehen Anpassungsmaßnahmen wie eine Intensivierung der Beregnung allerdings im Widerspruch, da zusätzliche Beregnungsflächen zu höheren Verdunstungsverlusten beitragen. Lösungsansätze könnten eine Kombination verschiedener Maßnahmen, aber auch Maßnahmen zur Vermeidung von Verdunstungsverlusten in anderen Sektoren wie z.B. der Forstwirtschaft sein.

Insgesamt werden mittelfristig gute Chancen für die Landwirtschaft gesehen. Ansteigende Temperaturen bei ausreichender Wasserversorgung ermöglichen beispielsweise den Anbau von Silomaissorten mit höheren Reifezahlen oder auch den Anbau von neueren, wärmeliebenderen Sorten. Die Ergebnisse werden durch Olesen et al. (2002) bestätigt, die für die Landwirtschaft in Mitteleuropa in den kommenden Jahrzehnten unter Klimawandel insgesamt günstige Bedingungen voraussehen.

3.4. Zusammenfassung

Durch den CO_2 -Düngungseffekt können die klimabedingten Ertragszuwächse auf Landesebene und auf der Ebene der Klima-Boden-Räume zunehmen. Ertragssteigerungen sind sowohl bei den Winterweizen und Winterroggen, als auch bei Silomais bis zur Mitte des Jahrhunderts möglich, da die klimatischen Ertragsbedingungen weiterhin günstig sein werden. Ein Temperaturanstieg oberhalb von 2K wird jedoch zu Ertragsrückgängen insbesondere bei Mais führen, der nicht mehr nur durch den evtl. zum Tragen kommenden CO_2 -Düngungseffekt abgemildert werden kann.

3.5. Literatur

Amthor, J. S. (1998): "Perspective on the relative insignificance of increasing atmospheric CO_2 concentration to crop yield." Field Crops Research 58(2): 109-127.

- Högy, P. und A. Fangmeier (2008): "Effects of elevated atmospheric CO2 on grain quality of wheat." Journal of Cereal Science 48(3): 580-591.
- Kropp J, Roithmeier, O., Hattermann, F., Rachimow, C., Lüttger, A., Wechsung, F., Lasch, P., Christiansen ES, Reyer, C., Suckow, F., Gutsch, M., Holsten, A., Kartschall, T., Wodinski, M., Hauf Y, Conradt, T., Österle, H., Walther, C., Lissner, T., Lux, N., Tekken, V., Ritchie, S., Kossak, J., Klaus M, Costa, L., Vetter, T., Klose, M. (2009) Klimawandel in Sachsen-Anhalt: Verletzlichkeiten gegenüber den Folgen des Klimawandels. Endbericht. Potsdam. In. Potsdam-Institut für Klimafolgenforschung, p 449
- Olesen, J. E. und M. Bindi (2002): "Consequences of climate change for European agricultural productivity, land use and policy." European Journal of Agronomy 16(4): 239-262.
- Piikki, K., L. De Temmerman, K. Ojanperä, H. Danielsson und H. Pleijel (2008): "The grain quality of spring wheat (Triticum aestivum L.) in relation to elevated ozone uptake and carbon dioxide exposure." European Journal of Agronomy 28(3): 245-254.
- Roßberg D, Michel V., Graf, R. und Neukampf, R. (2007) Definition von Boden-Klima-Räumen für die Bundesrepublik Deutschland. Nachrichtenbl Deut Pflanzenschutzd 59:155-161
- Tubiello, F. N., J. S. Amthor, K. J. Boote, M. Donatelli, W. Easterling, G. Fischer, R. M. Gifford, M. Howden, J. Reilly und C. Rosenzweig (2007): "Crop response to elevated CO₂ and world food supply: A comment on "Food for Thought..." by Long et al., Science 312:1918-1921, 2006." European Journal of Agronomy 26(3): 215-223.
- Wechsung, F., F.-W. Gerstengarbe, P. Lasch und A. Lüttger (2008): "Die Ertragsfähigkeit ostdeutscher Ackerflächen unter Klimawandel." PIK-Report No. 112. Potsdam Institute for Climate Impact Research (PIK). Potsdam.
- Wu D.-X., Wang G.-X., Bai Y.-F., Liao J.-X. (2004) Effects of elevated CO2 concentration on growth, water use, yield and grain quality of wheat under two soil water levels. Agriculture, Ecosystems & Environment 104:493-507